Přejít na matematické fórum Připravili jsme pro Vás zbrusu nové fórum a jsme připravení odpovídat na Vaše otázky!


Články » SŠ Matematika » Geometrie

Pythagorova věta

Vydáno dne v kategorii Geometrie; Autor: ; Počet přečtení: 19 217

Pythagorova věta popisuje vztah, který platí mezi délkami stran pravoúhlých trojúhelníků.


Pythagorova věta patří mezi nejslavnější věty matematiky. Popisuje vztah, který platí mezi délkami stran v pravoúhlém trojúhelníku. Pomocí této věty dopočítáte délku zbývající strany. Je to vlastně zjednodušení kosinový věty (přejít na článek Sinová a kosinová věta). Tato věta se obvykle zapisuje v tomto tvaru:


V tomto vztahu označuje písmeno c přeponu a a, b odvěsny. Tento vztah se také dá vyjádřit větou: Obsah čtverce sestrojeného nad přeponou je roven součtu obsahů čtverců nad odvěsnami.

Pythagorův trojůhelník

Tato věta byla pojmenována podle řeckého matematika Pythagora, ale možná byla známa již dříve.

Příklad 1

V pravoúhlém trojúhelníku známe strany a = 6cm, b = 4cm. Dopočítejte délku přepony c:

Pokud dosadíme hodnoty do Pythagorovy věty, dostaneme následující vzorec. po další úpravě dostaneme a konečně odmocněním získáme výsledek:

Příklad 2

Máte žebřík dlouhý 10 metrů. Pokud chcete na žebřík vylézt, musíte ho postavit nejméně 2 metry od zdi. Bude vám žebřík stačit abyste se dostali do výšky 9.5 metru?

Strana c je v tomto případě rovna 10. Strana b je rovna 2code a stranu a musíme dopočítat. Dopočítáme to dosazením do vzorce: , což je přibližně 9.8 metru. Žebřík nám tedy bude stačit.


Tento clanek pro vas napsal Jakub Vojacek!

Test

Určete intervaly monotonie funkce


Hlavolam

Představte si, že máte chodbu, jejíž stěny tvoří zrcadla. Zkuste v ní rozmístit osm stejně velkých zrcadlových tabulí tak, aby z pohledu pozorovatele byla chodba prázdná (aby viděl to co by viděl bez umístěných zrcadel) a v chodbě se mohl skrývat člověk (obestavěn zrcadly) naprosto neviděn. Uvažujte jenom půdorysné řešení.
Neviditelný