Přejít na matematické fórum Připravili jsme pro Vás zbrusu nové fórum a jsme připravení odpovídat na Vaše otázky!


Články » SŠ Matematika » Geometrie » Analytická geometrie

Analytická geometrie - Úseková rovnice přímky

Vydáno dne v kategorii Analytická geometrie; Autor: ; Počet přečtení: 37 666

Dnes zařadíme do našich znalostí další způsob jak zapsat přímku v rovině. Tento způsob se nazývá úseková rovnice přímky.


Takže, jak už bylo řečeno v úvodu, naučíme se jak zapsat přímku pomocí úsekového tvaru. Tento tvar má relativně hodně omezení a mnoho přímek podle něj nelze zapsat.

Mějme v rovině body P[p; 0] a Q[0; q], kde p, q jsou různé od nuly, potom bude mít přímka PQ rovnici:


Nyní, když jsme si nadefinovali úsekovou rovnice přímky, musíme si říci, kdy lze tento tvar použít. Ono by se to dalo logicky odvodit z předchozího odstave. Body P, Q musí ležet na osách x, y. Proto pokud přímka povede počátkem nelze ji zapsat pomocí úsekového tvaru. Zároveň nelze zapsat přímky rovnoběžné se souřadnicovými osami.

1) Zapište rovnice přímky AB, je-li A[0; 3], B[1; 0].


Nejedná se o nic jiného, než o přiřazení proměnným p, q správnou hodnotu. Tuto hodnotu nalezneme v souřadnicích zadaných bodů A, B. Obecně můžeme zapsat první bod jako P[p; 0]. Tomuto tvaru odpovídá bod B a proto bude mít proměnná p hodnotu 1. Logicky pro q zbývá hodnota z bodu A a proto q = 1. Rovnice tedy bude vypadat takto:


2) Napište úsekový tvar přímky AB, kde A[3;0], B[0; -2].


K úsekovému tvaru přímky potřebujeme body zadané způsobem P[p; 0], Q[0; q], ale většinou takto pěkně zadané body nedostaneme. Pokud tedy dostaneme body zadané například A[-1; 3], B[2; 1], tak úsekovou rovnici můžeme zapsat pouze tehdy, určíme-li si body na souřadnicových osách.

Najdeme obecnou rovnici přímky AB:
u = (B-A) = (3; -2)
n = (2; 3)
2x + 3y + c = 0
c = -7
p: 2x + 3y -7 = 0
Nyní dosadíme za y = 0:
2x + 3*0 -7 =0
Dostáváme bod P[]
Nyní dosadíme za x = 0:
2*0 + 3y - 7 = 0
Dostáváme bod Q[]

Máme-li body P, Q, není žádný problém napsat úsekovou rovnici přímky p:


Tato rovnice se dá ještě upravit:

Na úsekovém tvaru přímky doopravdy není nic složitého a proto přikročíme k procvičování. Oblíbeným námětem na písemky je napsání jedné přímky ve všech možných tvarech (obecný, parametrický a úsekový) a právě to si za chvíli vyzkoušíme.

Procvičování

Napište všechny tvary přímky AB, kde A[3; 0], B[0; -2].

Úseková rovnice: [br] [br] Parametrická rovnice

Určíme směrový vektor u přímky AB.

u = B-A = (-3; -2) = (3; 2)
X = A + t*u
x = 3 + 3t
y = 0 + 2t
Obecná rovnice

Nejprve určíme normálový vektor u.

n = (2; -3)
2x - 3y + c = 0
c = -6
p: 2x - 3y - 6 = 0
Směrnicová rovnice

Tento tvar se dá lehce vyjádřit z obecné rovnice přímky.

3y = 2x - 6


Tento clanek pro vas napsal Jakub Vojacek!

Test

Určete obsah plochy ohraničené křivkami a .


Hlavolam

Jak to tak bývá, zlý čaroděj uvěznil mudrce. A kdo by to čekal, dal mu šanci se zachránit, pokud splní úkol. Na stole je kulatý tác, kterým lze volně otáčet, a na něm čtyři mince do čtverce. Mudrc má zavázané oči, nic nevidí. Jeho úkolem je otočit mince tak, že bude na všech panna. Nemá to však jednoduché. Otočí jistý počet mincí, pak černokněžník tácem zatočí. Opět otočí nějaké mince a znovu se tácem náhodně otočí. Toto se opakuje, dokud nejsou všechny mince správně. V tu chvíli je hra zlotřilým čarodějem ukončena. Mudrc nepozná podle hmatu pannu od orla. Musí vždy mince nechat na svém místě, ve čtverci. A hlavně - kvůli zlé magii - má strašnou smůlu a pokud bude spoléhat jen na náhodu, tak úkol nikdy nesplní.