Články » SŠ Matematika » Geometrie » Analytická geometrie

Analytická geometrie - Vektorový součin

Vydáno dne v kategorii Analytická geometrie; Autor: ; Počet přečtení: 79 648

Už umíme skalární součin vektorů, jehož výsledkem je jedno číslo. U vektorového součinu je výsledkem vektor.


Jak už jste si mohli přečíst v úvodu tohoto článku, výsledkem vektorového součinu je třetí vektor, který je kolmý na oba předešlé vektory.

Vektorový součin vektorů u, v se značí: u × v.

a × b = (a2b3-a3b2; a3b1-a1b3; a1b2-a2b1)

Jsou dány vektory a=(1;3;-1), b=(2;4;5). Určete jejich vektorový součin.

Je to vlastně jenom dosazení do vzorce:

a × b = (3*5-(-1)*4;(-1)*2-1*5;1*4-3*2)
a × b = (19;-7;-2)

Význam vektorového součinu

Kromě toho, že pomocí vektorového součinu určíte vektor kolmý na oba původní vektory (čehož využijeme například přu určování obecné rovnice roviny), můžeme také spočítat obsah rovnoběžníku daného původními vektory:

Rovnoběžník

Obsah rovnoběžníku ABCD z předchozího obrázku by se spočítal jako velikost vektorového součinu:

S=|u × v|

Určete obsah rovnoběžníku ABCD, jsou-li dány body A[2;3;-5], B[4;1;4], C[-8;-2;-3].

Nejprve určíme vektory u, v a pak vektorový součin z:

u=B-A
u=(2;-2;9)
v=C-A
v=(-10;-5;2)
z = u × v
z = (-4+45;-90-4;-10-20)
z = (41;-94;-30)

Obsah se vypočítá jako velikost vektorového součinu, tedy:

S=√(z12+z22+z32)
S=√(412+(-942)+(-302))
S=√11417
S ≈ 106.8

Tento výsledek si můžeme relativně lehce ověřit vypočítáním pomocí standardního vzorečku pro výpočet obsahu rovnoběžníku:

S=a*va

My stranu a můžeme určit jako velikost vektoru u, ale výšku musíme dopočítat.

Rovnoběžník

Jak jste mohli vidět na předchozím obrázku, výška rovnoběžníku se spočítá jako |v|*sin(&aplha;). Takže musíme určit velikosti vektorů u, v a úhel který svírají:

|u|2 = 4+4+81
|u| ≈ 9.4
|v|2 = 100+25+4
|v| ≈ 11.3
cos α = (u*v)/(|u|*|v|)
cos α = (-20+10+18)/(9.4*11.3)
cos α = 8/106.22
α = 85°40'

Nyní, když máme všechny hodnoty vypočítané, můžeme je dosadit do vzorce pro výpočet obsahu rovnoběžníku:

S=|u|*|v|*sin α
S=9.4*11.4*sin(85°40')
S ≈ 106.91

Z toho plyne: |a × b| = |a|*|b|*sin(α).

Vypočtěte obsah trojúhelníka A[1;3;1], B[4;1;3], C[1;4;-1].

Nastala trochu jiná situace. Vektorovým součinem dokážeme spočítat obsah rovnoběžníku, ale nyní musíme spočítat obsah trojúhelníku. Naštěstí pro nás to není těžký příklad. Pokud totiž složíme dva trojúhelníky ze zadání vedle sebe, vznikne rovnoběžník.

Rovnoběžník

Pokud tedy spočítáme obsah rovnoběžníku daného vektory u, v a vydělíme ho dvěma, získáme obsah trojúhelníku ABC.

u=B-A
u=(3;-2;2)
v=C-A
v=(0;1;-2)
z = u × v
z=(4-2;6;3)
z=(2;6;3)
S=√(22+62+32)
S=√49
S=7

Obsah rovnoběžníku ABCD je 7. My ale potřebujeme pouze obsah trojúhelníku ABC.

SABC=S/2
SABC = 3.5

Vektorový součin lze sice aplikovat pouze na vektoru ve prostoru, ale stejně můžeme zjistit obsah rovnoběžníku/trojúhelníku v rovině.

Vypočítejte obsah trojúhelníku A[-1;-1], B[2;0], C[1;3].

u=B-A
u=(3;1)
v=C-A 
v=(2;4)

Schází z-ová souřadnice. Jenomže to není problém, protože stačí jako třetí souřadnici dosadit 0.

z = u × v
z = (0;0;12-2)
z = (0;0;10)
SABCD = 10
SABC = 10/2 = 5

Tento clanek pro vas napsal Jakub Vojacek!

Test

Najděte asymptotu bez směrnice funkce


Hlavolam

Jak to tak bývá, zlý čaroděj uvěznil mudrce. A kdo by to čekal, dal mu šanci se zachránit, pokud splní úkol. Na stole je kulatý tác, kterým lze volně otáčet, a na něm čtyři mince do čtverce. Mudrc má zavázané oči, nic nevidí. Jeho úkolem je otočit mince tak, že bude na všech panna. Nemá to však jednoduché. Otočí jistý počet mincí, pak černokněžník tácem zatočí. Opět otočí nějaké mince a znovu se tácem náhodně otočí. Toto se opakuje, dokud nejsou všechny mince správně. V tu chvíli je hra zlotřilým čarodějem ukončena. Mudrc nepozná podle hmatu pannu od orla. Musí vždy mince nechat na svém místě, ve čtverci. A hlavně - kvůli zlé magii - má strašnou smůlu a pokud bude spoléhat jen na náhodu, tak úkol nikdy nesplní.