Články » SŠ Matematika

Dělení mnohočlenů

Vydáno dne v kategorii SŠ Matematika; Autor: ; Počet přečtení: 132 237

Naučíme se, jak dělit jeden mnohočlen jiným mnohočlenem se zbytkem.


V podstatě se nejedná o těžkou látku, akorát je to zdlouhavý proces, ve kterém není těžké udělat chybu. Je to v podstatě krácení zlomků. Tuto problematiku si vysvětlíme převážně na příkladech:

1) Vyřešte příklad :

Musíme začít tím, že si oba dva členy srovnáme podle velikosti exponentu. Příklad tedy bude vypadat takto: . Nyní musíme vzít první člen prvního mnohočlenu a vydělit ho druhým mnohočlenem: . To je první část výsledku: . Nyní přichází na řadu opačný postup. Musíme vynásobit výsledek s dělitelem a odečíst získané číslo od prvního mnohočlenu (dělence). Tento postup budeme opakovat do té doby, než se z prvního mnohočlenu stane 0, popřípadě do té doby, než bude první mnohočlen mít menší exponent než druhý - vyšel nám zbytek.


Po odečtení se z prvního mnohočlenu stane . Nyní budeme postupovat naprosto stejným způsobem. Vydělíme tedy . Tím získáme další člen výsledku. Nyní nás opět čeká násobení nového členu výsledku dělitelem a následné odečtení od prvního mnohočlenu:


2) Toto byl velmi lehký příklad. Zkusíme složitější. Vyřešte příklad

Vezmeme tedy první člen prvního mnohočlenu a vydělíme ho prvním členem druhého mnohočlenu: . To je první člen výsledku. Nyní tedy musíme vynásobit celého dělitele číslem x a získaný výsledek odečíst od dělence (tedy prvního mnohočlenu).


Dalším krokem členem výsledku je tedy pochopitelně . Opět musíme tímto výsledkem vynásobit dělitele a získaný výsledek odečíst od dělence:


Dál dělit nemůžeme, protože už nejde zjednodušit. Zbytek je tedy . Celý příklad vypadá takto:


3) Vyřešte příklad

Příklady se postupně zdají složitější a složitější, nicméně to není pravda. Furt je to to stejné dokola. Tento příklad tedy začneme tak, že vyřešíme . To je první část výsledku. Tímto tedy musíme vynásobit celého dělitele a získaný výsledek odečíst od dělence. A pak postupovat tímto způsobem do té doby, než se z dělence stane 0, popř. do té doby než zbytek nebude dělitelný dělitelem. Celý příklad tedy bude vypadat takto:


Existuje primitivní metoda dělení mnohočlenů lineárními mnohočleny; tato metoda se nazývá Hornerovo schéma.

Toť vše! Pokud máte nějaké nejasnosti, ptejte se v komentářích.


Tento clanek pro vas napsal Jakub Vojacek!

Test

Vypočtěte


Hlavolam

Byl jednou jeden mladý kouzelník a ten se šíleně zamiloval do jediné dcery krále, kterému sloužil. Ta ho taky hrozně milovala (dokázal jí kdykoliv vykouzlit květiny :-). Ale otec král tomu vůbec nepřál. Chtěl pro svou dceru nějakého urozeného a bohatého ženicha a ne takového nekňubu, jako byl kouzelník (jak si myslel). Intrikami, se mu ho podařilo křivě obvinit z krádeže a uvrhnout do žaláře. Ale kouzelník byl moc populární mezi lidem a tak ho nemohl dát jen tak jednoduše popravit, jak by rád. Vymyslel tedy na něj lest: u soudu mu dal možnost losování vlastní smrti. Řekl: "Zde v klobouku jsou dvě kuličky: černá a bílá. Vylosuješ-li si bílou, budeš žít. Ale vytáhneš-li z klobouku černou, zemřeš." Vypadalo to jako férová šance, ale král, který nechtěl nic riskovat, mu tam dal obě kuličky černé. Kouzelník naštěstí nebyl hloupý a dovtípil se to. Jak to jenom navléct, aby přežil ...