Stereometrie - Vzájemná poloha přímky a roviny

Vydáno dne v kategorii SŠ Matematika; Autor: Jakub Vojáček; Počet přečtení: 20 661

Popíšeme si jaké situace mohou nastat mezi přímkou a rovinou.


Začneme opět pozorováním, na následujícím obrázku je dána krychle ABCDEFGH. Určete počet společných bodů s přímkou p.

ALT

Na prvním obrázku leží přímka v rovině, má nekonečně mnoho společných bodů. Pokud by takovýto vztah nastal mezi dvěma přímkami, hovořili bychom, že jsou totožné, ale v případě roviny a přímky se o totožnosti nedá mluvit, proto můžeme konstatovat, že na prvním obrázku je přímka a rovina rovnoběžná. Na druhém obrázku nemá přímka a rovina žádný společný bod. V tomto případě tedy je přímka a rovina také rovnoběžná. Na posledním obrázku má přímka a rovina společný právě jeden bod a to je důkazem, že se jedná o stav různoběžnosti.

Víc se toho snad o vztahu mezi přímkou a rovinou nedá říci a tak sem pro vás na závěr připravil několik příkladů:

1) Je dána krychle ABCDEFGH. Určete všechny přímky, které procházejí bodem H a některým dalším vrcholem krychle a s rovinou ABC jsou různoběžné.



2) Je dána krychle ABCDEFGH. Určete všechny roviny, které prochází bodem H a dalším dvěma vrcholy krychle a jsou s přímkou BC různoběžné.



3) Je dána krychle ABCDEFGH. Určete všechny roviny, které prochází bodem H a dalším dvěma vrcholy krychle a jsou s přímkou BC rovnoběžné.



Test

Určete limitu \lim\limits_{x\to\pi}\frac{\tan x}{\sin 2x}:


Hlavolam

Na křížovce je devět polí, kde čísla v řadě a sloupci mají součet 15. Jaká čísla se nacházejí na každém poli, pokud všechna čísla jsou jedinečná?