Články » VŠ matematika » Reálná analýza

Substituční metoda

Vydáno dne v kategorii Reálná analýza; Autor: ; Počet přečtení: 2 540

Úvod do substituční metody při počítání integrálů


Substituční metoda

Tato metoda spočívá v zavedení nové proměnné do integrálu, díky které bude integrál lehčí vypočítat. Integrál nahradíme integrálem , kde . Není to ovšem celé, musíme diferenciál dx vyjádřit pomocí diferenciálu dt. Upravený integrál spočítáme a nakonec nahradíme zpět za proměnnou t.

, kde 

8) Spočítejte .

Příklad budeme pochopitelně řešit pomocí substituce. Substituovat bychom mohli více věcí, ale v tomto případě si nejvíce pomůžeme, pokud položíme substituci .


To pravé umění spočívá v tom, najít, jaká substituce se nám hodí nejvíce. V tomto příkladě se nám integrál po substituci zjednodušil na tabulkový integrál a nakonec jsme pouze dosadili za t.

Nezapomínejte na tabulkový integrál . Využijete ho často.

Spočítejte: .



Určete .



Metoda per partes

Spočítejte .



Zintegrujte funkci .



Parciální zlomky

Spočítejte




Tento clanek pro vas napsal Jakub Vojacek!

Test

Derivace je rovna:


Hlavolam

Představte si, že máte chodbu, jejíž stěny tvoří zrcadla. Zkuste v ní rozmístit osm stejně velkých zrcadlových tabulí tak, aby z pohledu pozorovatele byla chodba prázdná (aby viděl to co by viděl bez umístěných zrcadel) a v chodbě se mohl skrývat člověk (obestavěn zrcadly) naprosto neviděn. Uvažujte jenom půdorysné řešení.
Neviditelný